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Abstract

Although the interaction between ethanol and cocaine is well documented, it has generally been limited to situations in which the two

drugs are given concurrently. Little exists on the interaction between ethanol and cocaine when one drug is given prior to the other. In

Experiment 1, female Long–Evans rats were given five exposures to ethanol (2 g/kg ip) or vehicle prior to taste aversion conditioning with

cocaine (32 mg/kg sc) for a total of five conditioning trials. In Experiment 2, rats were given five exposures to cocaine (32 mg/kg sc) or

vehicle prior to taste aversion conditioning with ethanol (2 g/kg ip) for a total of five conditioning trials. Ethanol-preexposed, cocaine-

conditioned animals (Experiment 1) displayed attenuated aversions to the cocaine-associated solution, drinking significantly greater amounts

of saccharin than vehicle-preexposed, conditioned subjects. Conversely, cocaine-preexposed, ethanol-conditioned animals (Experiment 2)

displayed robust aversions to the ethanol-associated solution, drinking levels comparable to those consumed by vehicle-preexposed,

conditioned subjects and drinking significantly less than controls. Although the basis for these asymmetric effects is not known, they may

have implications for abuse vulnerability in that drug history may impact subsequent drug toxicity that, in turn, may alter drug acceptability.

D 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

The interaction of ethanol and cocaine has been reported

for a variety of behavioral and physiological effects, includ-

ing liver and cardiovascular toxicity, depression of myocar-

dial function, delayed offspring physical maturation,

postnatal mortality, disruption of rotarod performance and

suppression of schedule-controlled responding (Boyer and

Petersen, 1990; Church et al., 1991; Foltin and Fischman,

1989; Henning et al., 1994; Masur et al., 1989; Misra et al.,

1989; Perez-Reyes and Jeffcoat, 1992; Rech et al., 1978;

Sobel and Riley, 1997; Uszenski et al., 1992). Within the

abovementioned physiological and behavioral preparations,

the combination of ethanol and cocaine generally produces

greater effects than either drug alone.

Although such concurrent interactions have been well

documented, the examination of a serial interaction between

ethanol and cocaine in which one drug is given prior to

administering the other is somewhat limited (Itzhak and

Martin, 1999; Peris et al., 1997; York and MacKinnon,

1999). Interest in serial interactions, in general, stems from

the fact that drug history has a significant impact on sub-

sequent drug reactivity (both under conditions in which the

drugs are similar or different). This has become increasingly

important in relation to how drug history might impact the

subsequent abuse liability of specific drugs. As noted by

others, a drug’s acceptability (and likelihood of self-admin-

istration) may be a function of the balance of its rewarding

and aversive effects, and manipulations that affect either of

these two properties may impact the subsequent use and/or

abuse of that compound (Cunningham and Henderson, 2000;

Gaiardi et al., 1991, 1997; Goudie, 1979; Krank and O’Neill,

2002; Stefurak et al., 1990; Stolerman and D’Mello, 1981).

One such factor is drug history. For example, prior exposure

to ethanol has been reported to increase its reinforcing effects

(as measured in the conditioned place preference preparation;

Bienkowski et al., 1996; Gauvin and Holloway, 1991; Gau-

vin et al., 2000; Holloway et al., 1992; Reid et al., 1985) and

decrease its aversive effects (as measured in the conditioned

taste aversion (CTA) design; for a review, see Riley and

Simpson, 2001). Similar effects of cocaine preexposure have
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been reported (Le Pen et al., 1998; Lett, 1989; Shippenberg

and Heidbreder, 1994, 1995a,b; for a review, see Riley and

Simpson, 2001). Given that the likelihood of the acceptability

(and use of a drug) may depend on the relative strengths of its

rewarding and aversive properties, some understanding of

changes in the relative reinforcing and aversive effects of that

drug with drug history (its own or some other compound)

may provide insight into the abuse potential of that drug.

As noted, although the serial interaction between ethanol

and cocaine has been investigated, such assessments are

limited. In an initial report on this interaction, Peris et al.

(1997) reported that cocaine pretreatment had no effect on

ethanol-induced motor disruption (for similar results, see

Cailhol and Mormede, 2000). On the other hand, Itzhak and

Martin (1999) reported that cocaine pretreatment sensitized

the motoric effects of ethanol, while York and MacKinnon

(1999) reported that cocaine attenuated ethanol-induced

changes in body temperature. The effects of ethanol pre-

exposure on cocaine have also been assessed (Itzhak and

Martin, 1999; Le Pen et al., 1998; Manley and Little, 1997).

In these assessments, ethanol preexposure has been reported

to potentiate the effects of cocaine on locomotor activity

(Itzhak and Martin, 1999; Manley and Little, 1997) and to

attenuate (or have no effect on) cocaine-induced place

preferences (Le Pen et al., 1998). Thus, the effects of such

preexposure are often parameter-dependent.

Although serial interactions between ethanol and cocaine

have been reported, as noted, they have been restricted to

assessments of motor activity, body temperature and con-

ditioned place preferences (see above). Given the potential

effects of drug history on the aversive effects of drugs and,

consequently, on subsequent abuse liability, the present

study examined the serial interaction between ethanol and

cocaine within the CTA baseline, a procedure sensitive to

the aversive or toxic effects of drugs. In addition to being

used as a behavioral index of drug toxicity (Riley and Tuck,

1985), the aversion design has often been used to assess

serial interactions between drugs (Aragon et al., 1986;

Bienkowski et al., 1998a; Cannon et al., 1977; De Beun

et al., 1993; Ford and Riley, 1984; Goudie and Thornton,

1975; Kunin et al., 1999a,b; Riley and Simpson, 1999).

Specifically, one can assess the effect of exposure to one

drug on the ability of a second drug to condition an

aversion. In such work, preexposure to one drug has been

reported to attenuate or potentiate aversions induced by a

second drug. For example, in the initial report by Braveman

(1975) on the effects of cross-drug preexposure, preexpo-

sure to methylscopolamine attenuated both LiCl- and

amphetamine-induced taste aversions. Since that report,

similar attenuating effects of cross-drug preexposure have

been demonstrated with other drugs (for a review, see Riley

and Simpson, 2001). Although preexposure to one drug can

attenuate aversions induced by another drug, potentiated

effects also have been reported. In one of the initial reports,

Miceli et al. (1979) noted that preexposure to naloxone

potentiated both ethanol- and LiCl-induced taste aversions.

Subsequent to this demonstration, others have reported

potentiating effects of cross-drug preexposure with a variety

of drugs (Bienkowski et al., 1998b; Heinrichs et al., 1998;

Le Magnen et al., 1980; Lipinski et al., 1995; Risinger,

1997). Similar potentiated effects have been reported with

footshock and apomorphine (Lasiter and Braun, 1981) and

footshock and amphetamine (Bowers et al., 1996).

Given the general utility of cross-drug preexposure

within the CTA design to assay serial interactions between

drugs, the present study investigated the serial interaction of

cocaine and ethanol within this design. Specifically, in

Experiment 1, rats were exposed to ethanol prior to taste

aversion conditioning with cocaine. In Experiment 2, rats

were exposed to cocaine prior to taste aversion conditioning

with ethanol.

2. General method

2.1. Subjects

The subjects were 78 experimentally naive, female rats of

Long–Evans descent, approximately 120 days of age and

between 180 and 250 g in weight at the beginning of the

experiment. Guidelines established by the Institutional Ani-

mal Care and Use Committee (IACUC) at American Uni-

versity were followed at all times. Each animal’s body

weight and food and water consumption were monitored

daily. Food and water consumption were normal during the

course of the study, and the average body weight loss for

each group was approximately 6.2%.

2.2. Apparatus

Subjects were individually housed in stainless steel, wire-

mesh cages on the front of which graduated Nalgene tubes

were placed to provide 20-min access to water or saccharin.

Subjects were maintained on a 12:12 LD cycle (lights on at

0800 h) and at an ambient temperature of 23 �C for the

duration of the experiment. Food was available ad libitum.

2.3. Drugs and solutions

Cocaine hydrochloride (generously provided by NIDA)

was prepared as a 10-mg/ml solution in distilled water.

Ethanol (generously provided by the Department of Chem-

istry, American University) was prepared as a 95% solution

in distilled water and was diluted to a 15% injectable

solution. Saccharin (0.1% sodium saccharin, Sigma) was

prepared as a 1-g/l solution in tap water.

2.4. Procedure

2.4.1. Phase I: habituation

Following 24-h water deprivation, subjects were given

20-min access to water for 10–12 consecutive days until
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they approached and drank from the tube within 2 s of

its presentation.

2.4.2. Phase II: preexposure

On Day 1 of Phase II, subjects were given 20-min

access to water. Following this exposure, subjects were

ranked according to their water consumption and were

assigned to a preexposure condition. Four to five hours

following water consumption, subjects were given an

injection of one of two drugs (cocaine or ethanol) or the

drug vehicle (equivolume). These preexposure injections

were given every fourth day for a total of five drug

exposures. Subjects received 20-min access to water on

the intervening recovery days. No injections were given

following water access on these days.

2.4.3. Phase III: conditioning

On Day 1 of this phase, all subjects were given 20-min

access to a novel saccharin solution. Immediately following

saccharin access, subjects in each preexposure group were

ranked according to their saccharin consumption and

assigned to a different treatment condition such that mean

saccharin consumption was similar among groups. Subjects

were then given an injection of one of two drugs (cocaine

or ethanol) or the drug vehicle (equivolume). On the

following three water-recovery days, all subjects were

given 20-min access to water. No injections were given

following water access on these days. This alternating

procedure of conditioning/water recovery was repeated

until all subjects received five complete cycles. On the

day following the final water-recovery session, all subjects

were given 20-min access to saccharin in a final one-bottle

test of the aversion to saccharin. No injections were given

following this test.

3. Experiment 1: ethanol preexposure on

cocaine-induced taste aversions

3.1. Specific procedure

During drug preexposure, subjects were given an intra-

peritoneal injection of 2-g/kg ethanol (Group E) or its

distilled water vehicle (Group W) for a total of five

preexposures. During taste aversion conditioning, subjects

in both preexposure groups were divided into two groups

and received a subcutaneous injection of 32-mg/kg cocaine

or an equivolume sc injection of distilled water. This

resulted in four groups: E/W (n = 9), E/C (n = 10), W/W

(n = 9), W/C (n = 10). The first letter in each group designa-

tion refers to the compound given during preexposure, i.e.,

ethanol (E) or water (W). The second letter refers to the

compound given during conditioning, i.e., cocaine (C) or

water (W). Given that the purpose of Experiment 1 was to

assess the ability of ethanol preexposure to attenuate

cocaine-induced taste aversions, a dose of ethanol (2 g/kg)

known to affect the acquisition of CTAs was administered

during preexposure (June et al., 1992; Risinger and Cun-

ningham, 1995) and a dose of cocaine sufficiently large to

induce an aversion was administered during conditioning

(Ferrari et al., 1991; Riley and Diamond, 1998; Riley and

Simpson, 1999).

4. Experiment 2: cocaine preexposure on

ethanol-induced taste aversions

4.1. Specific procedure

During drug preexposure, subjects were given a subcuta-

neous injection of 32-mg/kg cocaine (Group C) or its

distilled water vehicle (Group W) for a total of five

preexposures. During taste aversion conditioning, subjects

in both preexposure groups were divided into two groups

and received an ip injection of 2.0-g/kg ethanol or an

equivolume injection of distilled water. This resulted in four

groups: C/W (n = 10), C/E (n = 10), W/W (n = 10), W/E

(n = 10). The first letter in each group designation refers to

the compound given during preexposure, i.e., cocaine (C) or

water (W). The second letter refers to the compound given

during conditioning, i.e., water (W) or ethanol (E). Given

that the purpose of Experiment 2 was to assess the ability of

cocaine preexposure to attenuate ethanol-induced taste

aversions, a dose of cocaine known to affect the acquisition

of CTAs was administered during preexposure (Riley and

Diamond, 1998; Riley and Simpson, 1999) and a dose of

ethanol sufficiently large to induce aversions on its own was

administered during conditioning (Kulkosky et al., 1980).

4.2. Statistical analysis

Differences in mean water consumption during preex-

posure were assessed using a 2� 5 repeated-measure

analysis of variance (ANOVA) with between-subjects vari-

able of Group (Groups E and W in Experiment 1; Groups

C and W in Experiment 2) and within-subjects variable of

Day (1–5). Post-hoc assessments were conducted using

independent sample t-tests. Within-subjects differences in

consumption from baseline (Preexposure Day 1) were

assessed using paired sample t-tests (Bonferroni correc-

tion). a was set at .05.

Differences in mean saccharin consumption during con-

ditioning for each group were assessed using a 2� 2� 5

repeated-measure ANOVA with between-subjects variables

of Preexposure Drug (ethanol or vehicle in Experiment 1;

cocaine or vehicle in Experiment 2) and Conditioning Drug

(cocaine or vehicle in Experiment 1; ethanol or vehicle in

Experiment 2) and within-subjects variable of Trial (1–5).

Post-hoc assessments were conducted using Tukey HSD

pairwise comparisons. Within-subjects differences in con-

sumption from baseline (Trial 1) were assessed using paired

sample t-tests (Bonferroni correction). a was set at .05.
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5. Results

5.1. Experiment 1: ethanol preexposure on cocaine-induced

taste aversions

5.1.1. Preexposure

Fig. 1 (top panel) illustrates the mean ( ± S.E.M.) con-

sumption of water for subjects receiving ethanol (Group E)

and water (Group W) over repeated preexposures. A 2� 5

repeated-measure ANOVA revealed a significant Day effect

[F(4,144) = 4.604, P < .05]. There was neither a significant

Group effect [F(1,36) = 0.528, P=.472] nor a Group�Day

interaction [F(4,144) = 0.205, P=.935]. Post-hoc assess-

ments using independent sample t-tests revealed that at no

point during preexposure did Groups E and W differ

(t’s� 0.284, df = 36, P’s� .469). Within-group paired sam-

ple t-tests (Bonferroni corrected P=.0125) revealed that

relative to the baseline (Preexposure Day 1), water consump-

tion significantly decreased on Trial 5 (t= 3.794, df = 18,

P < .0125) for Group E, whereas there was no decrease on

any trial for Group W (t’s� 0.130, df = 18, P’s� .017).

5.1.2. Conditioning

Fig. 1 (bottom panel) illustrates the mean ( ± S.E.M.)

consumption of saccharin for all four groups over repeated

conditioning trials. A 2� 2� 5 repeated-measure ANOVA

revealed significant effects of Preexposure Drug [F(1,34) =

9.576, P < .05], Conditioning Drug [F(1,34) = 137.619,

P < .05] and Trial [F(4,136) = 19.301, P < .05], as well as sig-

nificant Preexposure Drug�Conditioning Drug [F (1,34) =

20.583, P < .05], Conditioning Drug�Trial [F (4,136) =

40.753, P < .05] and Preexposure Drug�Conditioning

Drug�Trial interactions [ F(4,136) = 8.410, P < .05].

Post-hoc analyses using Tukey HSD revealed no signific-

ant differences among groups on the initial conditioning

trial (all P’s� .743), with subjects in all groups drinking

approximately 10.0 ml of saccharin. Over subsequent

conditioning trials, significant differences emerged among

groups. Specifically, vehicle-preexposed, conditioned sub-

jects (Group W/C) drank significantly less than their

controls (Group W/W) on Trials 2–5 (all P’s < .05).

Ethanol-preexposed, conditioned subjects (Group E/C)

drank significantly less than their controls (Group E/W)

on Trials 3–5 (all P’s < .05). Further, there were signific-

ant differences between the two experimental groups, i.e.,

Groups E/C and W/C, with subjects in Group W/C drinking

significantly less than Group E/C throughout conditioning

(all P’s < .05). There were no significant differences between

the two control groups at any point during conditioning (all

P’s� .259). All groups drank comparable amounts of water

during recovery days, where the average consumption for

animals in each group on the recovery day immediately

preceding each conditioning trial ranged from 12.44 to

13.8 ml.

Within-group paired sample t-tests (Bonferroni corrected

P=.0125) yielded the following results. Relative to the

baseline (Conditioning Trial 1), subjects in Group W/W

significantly increased saccharin consumption over trials

(t’s� 3.744, df = 8, all P’s < .0125). There was no significant

change in saccharin consumption from baseline for sub-

jects in Group E/W (t’s� 0.441, df = 8, all P’s� .073).

Vehicle-preexposed subjects, conditioned with cocaine

(Group W/C) significantly decreased saccharin consumption

over conditioning, drinking significantly less saccharin on

Trials 2–5 than on Trial 1 (t’s� 4.670, df = 9, all P’s < .0125).

Subjects preexposed to ethanol and conditioned with cocaine

(Group E/C) displayed a significant decrease on Trials 4 and 5

relative to their baseline (t’s� 3.736, df = 9, all P’s < .0125).

Fig. 1. The mean ( ± S.E.M.) consumption of water for subjects receiving

ethanol (Group E) and water (Group W) over repeated preexposures (top

panel). The mean ( ± S.E.M.) consumption of saccharin for all four groups

over repeated conditioning trials (Groups W/W, W/C, E/W and E/C; bottom

panel). The first letter in the group designation refers to the drug given

during preexposure, i.e., distilled water (W) or ethanol (E); the second letter

refers to the drug given during conditioning, i.e., distilled water (W) or

cocaine (C).
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5.2. Experiment 2: cocaine preexposure on ethanol-induced

taste aversions

5.2.1. Preexposure

Fig. 2 (top panel) illustrates the mean ( ± S.E.M.) con-

sumption of water for subjects receiving cocaine (Group C)

and water (Group W) over repeated preexposures. A 2� 5

repeated-measure ANOVA revealed a significant Day effect

[F(4,156) = 22.375, P < .05]. There was neither a significant

Group effect [F(1,39) = 0.106, P=.747] nor a Group�Day

interaction [F(4,156) = 1.067, P=.375]. Post-hoc assess-

ments using independent sample t-tests revealed that at no

point during preexposure did Groups C and W differ

(t’s� 0.073, df = 39, all P’s > .05). Within-group paired sam-

ple t-tests (Bonferroni corrected P=.0125) revealed that

relative to the baseline (Preexposure Day 1), water consump-

tion significantly increased on Trials 2–4 for Group C

(t’s� 4.529, df = 20, all P’s < .0125) and on Trials 3 and 4

for Group W (t’s� 3.744, df = 19, all P’s < .0125).

5.2.2. Conditioning

Fig. 2 (bottom panel) illustrates the mean ( ± S.E.M.)

consumption of saccharin for all four groups over repeated

conditioning trials. A 2� 2� 5 repeated-measure ANOVA

revealed significant effects of Conditioning Drug [F(1,36) =

171.482, P < .05] and Trial [F(4,144) = 13.234, P < .05], as

well as a significant Conditioning Drug�Trial interaction

[F(4,144) = 50.431, P < .05]. Post-hoc analyses using Tukey

HSD revealed no significant differences among groups on

the initial conditioning trial (all P’s� .959), with subjects in

all groups drinking approximately 9.0 ml of saccharin. Over

subsequent conditioning trials, significant differences

emerged among groups. Specifically, vehicle-preexposed,

conditioned subjects (Group W/E) drank significantly less

than their controls (Group W/W) on Trials 2–5 (all P’s

< .05). Cocaine-preexposed, conditioned subjects (Group C/

E) drank significantly less than their controls (Group C/W)

on Trials 2–5 (all P’s < .05). Further, there were no signific-

ant differences between the two experimental groups, i.e.,

Groups C/E and W/E, at any point during conditioning (all

P’s� 0.221). Similarly, there were no significant differences

between the two control groups at any point during con-

ditioning (all P’s� .394). All groups drank comparable

amounts of water during recovery days, where the average

consumption for animals in each group on the recovery day

immediately preceding each conditioning trial ranged from

9.75 to 13.05 ml.

Within-group paired sample t-tests (Bonferroni corrected

P=.0125) yielded the following results. Relative to the

baseline (Conditioning Trial 1), subjects in Group W/W

significantly increased saccharin consumption on Trial 2

(t� 4.023,df = 9,P < .0125).Subjects inGroupC/Wincreased

their saccharin consumption onTrials 2–4 (t’s� 2.960, df = 9,

P’s < .0125). Vehicle-preexposed subjects conditioned with

ethanol (Group W/E) significantly decreased saccharin con-

sumption over conditioning, drinking significantly less sac-

charin on Trials 2–5 than on Trial 1 (t’s� 6.960, df = 9,

P’s < .0125). Similarly, subjects preexposed to cocaine and

conditioned with ethanol (Group C/E) displayed a significant

decrease on Trials 2–5 relative to their baseline (t’s� 3.820,

df = 9, P’s < .0125).

6. Discussion

Although the concurrent interaction of ethanol and

cocaine has been widely reported, investigations into their

serial interaction are limited. In order to extend the scope of

research on such interactions, the present studies examined

Fig. 2. The mean ( ± S.E.M.) consumption of water for subjects receiving

cocaine (Group C) and water (Group W) over repeated preexposures (top

panel). The mean ( ± S.E.M.) consumption of saccharin for all four groups

over repeated conditioning trials (Groups W/W, W/E, C/W and C/E; bottom

panel). The first letter in the group designation refers to the drug given

during preexposure, i.e., distilled water (W) or cocaine (C); the second letter

refers to the drug given during conditioning, i.e., distilled water (W) or

ethanol (E).
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the cross-drug preexposure effect within CTA learning. As

noted, in Experiment 1, animals preexposed to ethanol and

conditioned with cocaine displayed attenuated aversions to

the cocaine-associated solution, drinking significantly

greater amounts of saccharin than vehicle-preexposed, con-

ditioned subjects. Conversely, in Experiment 2, animals

preexposed to cocaine and conditioned with ethanol dis-

played robust aversions to the ethanol-associated solution,

drinking at levels comparable to those consumed by

vehicle-preexposed, conditioned subjects and drinking sig-

nificantly less than controls. Thus, the present experiments

demonstrated an asymmetric serial interaction between

ethanol and cocaine.

That ethanol preexposure attenuated cocaine-induced

taste aversions is consistent with Le Pen et al. (1998) who

demonstrated that ethanol pretreatment (via consumption)

reduced the ability of cocaine to induce a place preference.

On the other hand, the present findings are not consistent

with the reports that cocaine-induced changes in locomotion

are potentiated by ethanol pretreatment (see Itzhak and

Martin, 1999; Manley and Little, 1997). That cocaine

preexposure did not affect ethanol-induced taste aversions

is consistent with Peris et al. (1997) (see also Cailhol and

Mormede, 2000) who reported that cocaine had no effect on

ethanol-induced changes in locomotion. Again, however,

others have noted both potentiation and attenuation of

ethanol-induced effects by cocaine pretreatment (see Itzhak

and Martin, 1999; York and MacKinnon, 1999). Given the

myriad of effects reported in such serial interactions

between ethanol and cocaine, the effects of such interactions

are likely highly dependent upon the specific conditions

under which the interaction is assessed.

To understand the basis for the current asymmetric

interaction between ethanol and cocaine, an explanation of

the basis for UCS preexposure needs to be addressed.

Although a variety of explanations have been suggested

for the UCS preexposure effect (Batson and Best, 1979;

Gaiardi et al., 1991; Gamzu, 1977; Mikulka et al., 1977;

Parker et al., 1973; Randich and LoLordo, 1979), the two

that have received the most attention are drug tolerance and

habituation to illness (Elkins, 1974; LeBlanc and Cappell,

1974; Riley and Simpson, 1999; Riley et al., 1976).

According to these accounts, during drug preexposure

animals become tolerant (or habituate) to the aversive

effects of the drug such that during subsequent conditioning

these effects are reduced below the level sufficient to induce

an aversion (Cannon et al., 1977; Cappell et al., 1975;

Dacanay and Riley, 1982; Goudie and Thornton, 1975;

Goudie et al., 1975, 1976; Hunt et al., 1985; LeBlanc and

Cappell, 1974; Riley et al., 1976). These accounts have also

been applied to results from cross-drug preexposure studies.

Specifically, animals preexposed to one drug develop tol-

erance (or habituate) to the aversive effects of both the

preexposure and conditioning drug. Consequently, during

conditioning, the drug does not produce an aversive effect

sufficient to condition an aversion (Aragon et al., 1986;

Cannon et al., 1977; Cappell et al., 1975; De Beun et al.,

1996; Goudie and Thornton, 1975; Hunt and Rabin, 1988;

Ng Cheong Ton and Amit, 1985; Vogel and Nathan, 1976).

To account for the present data based on this possibility,

it would have to be argued that animals preexposed to

ethanol developed cross tolerance to cocaine’s aversive

effects, but that, during repeated cocaine preexposures, they

did not develop cross tolerance to the aversive effects of

ethanol. This account assumes that cross-tolerance (or

habituation) is not bidirectional. The basis for this asym-

metric tolerance may be due to the fact that the aversive

properties of ethanol and cocaine, while similar are not

identical. Specifically, cocaine’s aversive effects may be a

subset of ethanol’s aversive properties such that tolerance

(or habituation) to ethanol may have generalized to cocaine,

whereas tolerance (or habituation) to cocaine did not affect

the capacity of ethanol to produce aversions (for similar

analyses with ethanol and nicotine, see McMillan et al.,

1999; with amphetamine and N-tert-butyl-a-phenyl nitrone,
see Rabin, 1996; with ethanol and LiCl, see Rabin et al.,

1988; for other reports on asymmetric interactions in the

cross-drug preexposure preparation, see Aragon et al., 1986;

Braveman, 1975; Brown et al., 1979; Cappell et al., 1975;

Goudie and Thornton, 1975; Switzman et al., 1981; Vogel

and Nathan, 1976; for asymmetric interactions between

radiation and LiCl, see Rabin et al., 1988; for a review,

see Riley and Simpson, 2001).

Although the bases for the aversions induced by cocaine

and ethanol remain to be determined, Hunt and Amit (1987)

have suggested that these two compounds do work by

different mechanisms. Specifically, they have argued that

CTAs induced by higher doses of ethanol, unlike other

drugs, e.g., cocaine, are a function of both centrally and

peripherally mediated toxic effects. In relation to the present

results, it is possible that the ability of ethanol to attenuate

cocaine-induced aversions is a function of the complete

overlap of ethanol’s aversive effects (central and peripheral)

with those of cocaine (primarily peripheral). The failure of

cocaine to attenuate ethanol-induced aversions may be a

function of the partial overlap of cocaine’s peripheral effects

with the central and peripheral effects of ethanol. Although

consistent with Hunt and Amit’s suggestion, until the

specific peripheral and central effects of ethanol and cocaine

that mediate aversion learning are clearly assessed, this

interpretation of the present asymmetric serial interaction

must be cautiously made.

An alternative interpretation of the asymmetric effects

reported here concerns the specific choice of doses used for

the preexposure and conditioning drugs. Specifically, in the

present experiment, preexposure to ethanol (2 g/kg) attenu-

ated aversions induced by cocaine (32 mg/kg). On the other

hand, the same dose of cocaine (i.e., 32 mg/kg) had no

effect on aversions induced by 2-g/kg ethanol. It is possible

that the asymmetry reported was a function of the specific

choice of doses (i.e., a high dose of the preexposure drug

attenuates an aversion induced at low doses, but not vice
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versa), and had more comparable doses been chosen,

different results would have been obtained. Although pos-

sible, it should be noted that the choice of doses was based

on the degree of aversions produced at these doses and not

on their absolute value. That is, ethanol and cocaine (at

these doses) induced comparable aversions. Interestingly,

the attenuating effects of drug preexposure generally are

more a function of the drug’s aversion-inducing effect than

the specific dose itself (for a review, see Riley and Simpson,

2001; though see Hunt et al., 1985). It is certainly possible,

however, that other drug choices may have resulted in

different degrees of attenuation.

Interestingly, during the conduct of the present experi-

ments a study by Kunin et al. (1999b) was published

demonstrating symmetrical interactions between ethanol

and cocaine in the CTA design. Specifically, Kunin et al.

reported that rats preexposed to ethanol (1.2 g/kg ip for 3

consecutive days) and subsequently injected with cocaine

(18 mg/kg ip every third day for a total of three condition-

ing trials) displayed attenuated aversion learning with

cocaine. Similarly, animals preexposed to cocaine (36 mg/

kg ip for 3 consecutive days) and subsequently conditioned

with ethanol (1.2 g/kg ip) demonstrated attenuated aver-

sions with ethanol. Although the bases for the differences in

results of the present study and those of Kunin et al.

(1999b) are not known, it is important to note that the

studies varied on a number of parameters, including time

between preexposure and conditioning (3 vs. 0 days),

frequency of drug preexposure (spaced vs. massed), number

of drug preexposures (five vs. three), dose of the preexpo-

sure drug (36 vs. 32 mg/kg) and route of administration (sc

vs. ip). Interestingly, each of these parameters has been

reported to influence the UCS preexposure effect in CTA

learning (Aguado et al., 1997; Cappel and LeBlanc, 1975;

De Beun et al., 1996; Domjan and Siegel, 1983; Goldstein

et al., 1974; Hunt et al., 1985; Kalant et al., 1971; Klein et

al., 1986; Riley and Diamond, 1998; for a review, see Riley

and Simpson, 2001). From work on CTA learning and other

response preparations (see Section 1), it is clear that the

effects of drug history on subsequent drug responsivity are

parameter-dependent.

As noted above, the interest in the effects of drug history

and the conditions under which these effects occur may

have importance for drug use and abuse. Specifically,

exposure to a variety of drugs has been reported to affect

their own (and other’s) aversive and reinforcing properties

(Bienkowski et al., 1998b; Heinrichs et al., 1998; Lipinski et

al., 1995; Riley and Simpson, 2001). These properties are

important in that their balance has been suggested to

determine in part the acceptability of the drug and its

likelihood of self-administration. That is, the perceived

rewarding effects of a drug (in terms of its self-administra-

tion) may be a function of the balance of these two affective

properties. If the drug’s aversive effects are dominant over

its reinforcing effects, the likelihood of its subsequent use

may be reduced (Cunningham and Henderson, 2000;

Gaiardi et al., 1991, 1997; Goudie, 1979; Stefurak et al.,

1990; Stolerman and D’Mello, 1981). Conversely, if the

aversive effects are weak relative to its reinforcing effects,

the likelihood of its use may increase (Ettenberg et al., 1982;

Lynch and Carroll, 2001; Pizzi and Cook, 1996; Siegel et

al., 1995). The fact that drug history affects the aversive and

reinforcing effects of a drug suggests that it may also affect

the drug’s subsequent use (for an analysis of changes in the

aversive and reinforcing properties of ethanol with repeated

exposure and the impact of these change on subsequent

ethanol intake, see Badia-Elder and Kiefer, 1999; Kiefer et

al., 1994; Stewart et al., 1991). As described, ethanol

preexposure reduced the ability of cocaine to induce a taste

aversion, an index of cocaine’s aversiveness. Given the

abovementioned association between changes in such

effects and drug self-administration, it is possible that

ethanol exposure may also impact the subsequent self-

administration of cocaine. Conversely, given that there

was no effect of cocaine exposure on ethanol-induced taste

aversions suggests that such a history may have little impact

on ethanol’s subsequent intake. However, given that the

effects of drug history are parameter-dependent (see above)

and the effects of cocaine history on ethanol intake have not

been investigated, this issue remains unknown.
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